Bioinformatika – penggunaan teknologi informasi untuk meneliti, mengumpulkan, dan menyimpan data genomik atau data biologis lainnya.
Selamat datang kembali teman-teman Akostader di LingkaranDunia. Kali ini saya akan berbegi informasi mengenai Bioinformatika, Bioinformatika berasal dari ilmu biologi, agar lebih memperjelasnya silahkan anda melanjutkan membaca artikel di bawah ini.
Bioinformatika (bahasa Inggris: bioinformatics) adalah (ilmu yang mempelajari) penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.
Sejarah Bioinformatika
Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an. Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat
(sejak 1960-an) mengawali perkembangan basis data dan teknik analisis
sekuens biologis. Basis data sekuens protein mulai dikembangkan pada
tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing
DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan
terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada
1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.
Penerapan utama bioinformatika
Basis data sekuens biologis
Sesuai dengan jenis informasi biologis yang disimpannya, basis data sekuens biologis dapat berupa basis data primer untuk menyimpan sekuens primer asam nukleat maupun protein,
basis data sekunder untuk menyimpan motif sekuens protein, dan basis
data struktur untuk menyimpan data struktur protein maupun asam nukleat.
Basis data utama untuk sekuens asam nukleat saat ini adalah GenBank (Amerika Serikat), EMBL (Eropa), dan DDBJ(Inggris) (DNA Data Bank of Japan, Jepang).
Ketiga basis data tersebut bekerja sama dan bertukar data secara harian
untuk menjaga keluasan cakupan masing-masing basis data. Sumber utama
data sekuens asam nukleat adalah submisi langsung dari periset
individual, proyek sekuensing genom, dan pendaftaran paten.
Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam
nukleat umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.
Sementara itu, contoh beberapa basis data penting yang menyimpan sekuens primer protein adalah PIR (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga basis data tersebut telah digabungkan dalam UniProt
(yang didanai terutama oleh Amerika Serikat). Entri dalam UniProt
mengandung informasi tentang sekuens protein, nama organisme sumber
protein, pustaka yang berkaitan, dan komentar yang umumnya berisi
penjelasan mengenai fungsi protein tersebut.
BLAST (Basic Local Alignment Search Tool) merupakan perkakas bioinformatika yang berkaitan erat dengan penggunaan basis data sekuens biologis. Penelusuran BLAST (BLAST search)
pada basis data sekuens memungkinkan ilmuwan untuk mencari sekuens asam
nukleat maupun protein yang mirip dengan sekuens tertentu yang
dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing maupun untuk memeriksa fungsi gen hasil sekuensing. Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.
PDB (Protein Data Bank, Bank Data Protein) adalah basis data tunggal yang menyimpan model struktural tiga dimensi protein dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-X, spektroskopi NMR dan mikroskopi elektron). PDB menyimpan data struktur sebagai koordinat tiga dimensi yang menggambarkan posisi atom-atom dalam protein ataupun asam nukleat.
Penyejajaran sekuens
Penyejajaran sekuens (sequence alignment) adalah proses penyusunan/pengaturan dua atau lebih sekuens sehingga persamaan sekuens-sekuens tersebut tampak nyata. Hasil dari proses tersebut juga disebut sebagai sequence alignment atau alignment saja. Baris sekuens dalam suatu alignment
diberi sisipan (umumnya dengan tanda "–") sedemikian rupa sehingga
kolom-kolomnya memuat karakter yang identik atau sama di antara
sekuens-sekuens tersebut. Berikut adalah contoh alignment DNA dari dua sekuens pendek DNA yang berbeda, "ccatcaac" dan "caatgggcaac" (tanda "|" menunjukkan kecocokan atau match di antara kedua sekuens).
ccat---caac
| || ||||
caatgggcaac
Sequence alignment merupakan metode dasar dalam analisis sekuens. Metode ini digunakan untuk mempelajari evolusi sekuens-sekuens dari leluhur yang sama (common ancestor). Ketidakcocokan (mismatch) dalam alignment diasosiasikan dengan proses mutasi, sedangkan kesenjangan (gap, tanda "–") diasosiasikan dengan proses insersi atau delesi. Sequence alignment memberikan hipotesis atas proses evolusi yang terjadi dalam sekuens-sekuens tersebut. Misalnya, kedua sekuens dalam contoh alignment di atas bisa jadi berevolusi dari sekuens yang sama "ccatgggcaac". Dalam kaitannya dengan hal ini, alignment juga dapat menunjukkan posisi-posisi yang dipertahankan (conserved) selama evolusi dalam sekuens-sekuens protein, yang menunjukkan bahwa posisi-posisi tersebut bisa jadi penting bagi struktur atau fungsi protein tersebut.
Selain itu, sequence alignment juga digunakan untuk mencari sekuens yang mirip atau sama dalam basis data sekuens. BLAST adalah salah satu metode alignment yang sering digunakan dalam penelusuran basis data sekuens. BLAST menggunakan algoritma heuristik dalam penyusunan alignment. Beberapa metode alignment lain yang merupakan pendahulu BLAST
adalah metode "Needleman-Wunsch" dan "Smith-Waterman". Metode
Needleman-Wunsch digunakan untuk menyusun alignment global di antara dua atau lebih sekuens, yaitu alignment atas keseluruhan panjang sekuens tersebut. Metode Smith-Waterman menghasilkan alignment lokal, yaitu alignment atas bagian-bagian dalam sekuens. Kedua metode tersebut menerapkan pemrograman dinamik (dynamic programming) dan hanya efektif untuk alignment dua sekuens (pairwise alignment) Clustal adalah program bioinformatika untuk alignment multipel (multiple alignment), yaitu alignment beberapa sekuens sekaligus. Dua varian utama Clustal adalah ClustalW dan ClustalX.
Metode lain yang dapat diterapkan untuk alignment sekuens adalah metode yang berhubungan dengan Hidden Markov Model ("Model Markov Tersembunyi", HMM). HMM merupakan model statistika yang mulanya digunakan dalam ilmu komputer untuk mengenali pembicaraan manusia (speech recognition).
Selain digunakan untuk alignment, HMM juga digunakan dalam
metode-metode analisis sekuens lainnya, seperti prediksi daerah pengkode
protein dalam genom dan prediksi struktur sekunder protein.
Prediksi struktur protein
Secara kimia/fisika, bentuk struktur protein diungkap dengan kristalografi sinar-X ataupun spektroskopi NMR, namun kedua metode tersebut sangat memakan waktu dan relatif mahal. Sementara itu, metode sekuensing protein relatif lebih mudah mengungkapkan sekuens asam amino
protein. Prediksi struktur protein berusaha meramalkan struktur tiga
dimensi protein berdasarkan sekuens asam aminonya (dengan kata lain,
meramalkan struktur tersier dan struktur sekunder berdasarkan struktur
primer protein). Secara umum, metode prediksi struktur protein yang ada
saat ini dapat dikategorikan ke dalam dua kelompok, yaitu metode
pemodelan protein komparatif dan metode pemodelan de novo.
Pemodelan protein komparatif (comparative protein modelling)
meramalkan struktur suatu protein berdasarkan struktur protein lain
yang sudah diketahui. Salah satu penerapan metode ini adalah pemodelan homologi (homology modelling), yaitu prediksi struktur tersier protein berdasarkan kesamaan struktur primer protein. Pemodelan homologi didasarkan pada teori bahwa dua protein yang homolog
memiliki struktur yang sangat mirip satu sama lain. Pada metode ini,
struktur suatu protein (disebut protein target) ditentukan berdasarkan
struktur protein lain (protein templat) yang sudah diketahui dan
memiliki kemiripan sekuens dengan protein target tersebut.
Selain itu,
penerapan lain pemodelan komparatif adalah protein threading yang didasarkan pada kemiripan struktur tanpa kemiripan sekuens primer. Latar belakang protein threading
adalah bahwa struktur protein lebih dikonservasi daripada sekuens
protein selama evolusi; daerah-daerah yang penting bagi fungsi protein
dipertahankan strukturnya. Pada pendekatan ini, struktur yang paling
kompatibel untuk suatu sekuens asam amino dipilih dari semua jenis
struktur tiga dimensi protein yang ada. Metode-metode yang tergolong
dalam protein threading berusaha menentukan tingkat kompatibilitas tersebut.
Dalam pendekatan de novo atau ab initio,
struktur protein ditentukan dari sekuens primernya tanpa membandingkan
dengan struktur protein lain. Terdapat banyak kemungkinan dalam
pendekatan ini, misalnya dengan menirukan proses pelipatan (folding) protein dari sekuens primernya menjadi struktur tersiernya (misalnya dengan simulasi dinamika molekular),
atau dengan optimisasi global fungsi energi protein. Prosedur-prosedur
ini cenderung membutuhkan proses komputasi yang intens, sehingga saat
ini hanya digunakan dalam menentukan struktur protein-protein kecil.
Beberapa usaha telah dilakukan untuk mengatasi kekurangan sumber daya
komputasi tersebut, misalnya dengan superkomputer (misalnya superkomputer Blue Gene dari IBM).
Analisis ekspresi gen
Ekspresi gen dapat ditentukan dengan mengukur kadar mRNA dengan berbagai macam teknik (misalnya dengan microarray ataupun Serial Analysis of Gene Expression
["Analisis Serial Ekspresi Gen", SAGE]). Teknik-teknik tersebut umumnya
diterapkan pada analisis ekspresi gen skala besar yang mengukur
ekspresi banyak gen (bahkan genom) dan menghasilkan data skala besar. Metode-metode penggalian data (data mining)
diterapkan pada data tersebut untuk memperoleh pola-pola informatif.
Sebagai contoh, metode-metode komparasi digunakan untuk membandingkan
ekspresi di antara gen-gen, sementara metode-metode klastering (clustering) digunakan untuk mempartisi data tersebut berdasarkan kesamaan ekspresi gen.
Terimakasih atas kunjungan teman-teman di LingkaranDunia, serta membaca artikel yang berjudul Bioinformatika adalah Penggunaan Teknologi Informasi untuk Meneliti Genomik atau data Biologis, dan semoga saja artikel ini bermanfaat buat anda.